Sains Malaysiana 53(7)(2024): 1677-1691

http://doi.org/10.17576/jsm-2024-5307-15

 

Peranan Saiz Nanozarah Zink Oksida dalam Prestasi Pemangkinan Foto, Perencatan Bakteria dan Ketoksikan

(Role of Zinc Oxide Nanoparticle Size in Photocatalytic Performance, Bacterial Inhibition and Toxicity)

 

RAFIDAH ABD RAHMAN1,*, CHIN HUA CHIA2 & NOOR AZLINA MASDOR3

 

1Agri-Nanotechnology Programme, Biotechnology and Nanotechnology Research Centre, MARDI Headquarters, GPO Box 12301, 50774 Kuala Lumpur, Malaysia

2Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Post-Harvest Handling Programme, Industrial Crops Research Centre, MARDI Headquarters, GPO Box 12301, 50774 Kuala Lumpur, Malaysia

 

Received: 11 February 2024/Accepted: 5 June 2024

 

Abstrak

Nanozarah zink oksida (ZnO NP) telah diubah suai melalui pengisaran bebola untuk mengkaji kesan saiz zarah pada sifat dan prestasi bahan. Pengisaran serbuk ZnO komersial selama 6 dan 12 jam telah menghasilkan ZnO NP dengan purata saiz antara 13.2-36.5 nm. Pelbagai teknik pencirian termasuk spektroskopi UV-Vis, XRD, FESEM, TEM dan analisis potensi Zeta telah digunakan untuk menentukan morfologi zarah nano, struktur hablur, kestabilan dan sifat optik. Aktiviti fotomangkin terhadap degradasi metilena biru adalah lebih rendah untuk ZnO NP yang dikisar berbanding dengan ZnO NP tulen di bawah sinaran UV. Ujian antibakteria menggunakan kaedah resapan cakera agar menunjukkan zon perencatan terbesar terhadap patogen tumbuhan Xanthomonas oryzae pv. oryzae untuk ZnO NP tulen pada 100 mg/mL diikuti dengan ZnO NP yang dikisar 6 jam dan 12 jam. Ujian ketoksikan embrio ikan zebra menunjukkan penurunan kemandirian, kadar penetasan, kadar degupan jantung dan peningkatan kecacatan morfologi dan kematian yang bergantung kepada dos dan masa apabila terdedah kepada sampel ZnO NP. Kajian ini menunjukkan ketoksikan ZnO NP terhadap embrio ikan zebra dan fotomangkin adalah bergantung kepada saiz walaupun ujian antibakteria tidak dipengaruhi oleh saiz ZnO NP. Penemuan ini menunjukkan kepentingan pengoptimuman saiz nanozarah untuk aplikasi yang dikehendaki.

 

Kata kunci: Pengisaran bebola; pengubahsuaian bahan nano; saiz zarah; zink oksida

 

Abstract

Zinc oxide nanoparticles (ZnO NPs) were modified via ball milling to investigate the effect of particle size on material properties and performance. Grinding of commercial ZnO powder for 6 and 12 h produced ZnO NPs with average sizes between 13.2-36.5 nm. Multiple characterization techniques including UV-Vis spectroscopy, XRD, FESEM, TEM, and Zeta potential analysis were used to determine the nanoparticle morphology, crystal structure, stability, and optical properties. The photocatalytic activity against methylene blue degradation was lower for the milled ZnO NPs compared to pure ZnO NPs under UV irradiation. Antibacterial testing using the agar disc diffusion method demonstrated the largest inhibition zone against the plant pathogen Xanthomonas oryzaepv. oryzae for pure ZnO NPs at 100 mg/mL, followed by 6 h and 12 h-milled ZnO NPs. Zebrafish embryo toxicity assays showed decreased viability, hatching rates, heart rates, and increased morphological defects and mortality in a dose- and time-dependent manner upon exposure to the ZnO NP samples. The study showed the size dependent ZnO NPs toxicity in zebrafish embryos and photocatalysis although antibacteria tests were unaffected by ZnO NPs’ size. The results highlight the importance of nanoparticle size optimization for intended applications.

 

Keywords: Ball mill; nanomaterial modification; particle size; zinc oxide

 

REFERENCES

Abdullah, N.R., Mohd Nasir, M.H., Azizan, N.H., Wan-Mohtar, W.A.A.Q.I. & Sharif, F. 2022. Bioreactor-grown exo- and endo-β-glucan from Malaysian Ganoderma lucidum: An in vitro and in vivo study for potential antidiabetic treatment. Frontiers in Bioengineering and Biotechnology 10: 960320.

Al Hallak, M., Verdier, T., Bertron, A., Castelló Lux, K., El Atti, O., Fajerwerg, K., Fau, P., Hot, J., Roques, C. & Bailly, J.D. 2023. Comparison of photocatalytic biocidal activity of TiO2, ZnO and Au/ZnO on Escherichia coli and on Aspergillus niger under light intensity close to real-life conditions. Catalysts 13(7): 1139.

Altammar, K.A. 2023. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Frontiers in Microbiology 14: 1155622.

Babayevska, N., Przysiecka, Ł., Iatsunskyi, I., Nowaczyk, G., Jarek, M., Janiszewska, E. & Jurga, S. 2022. ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Scientific Reports 12: 8148.

Bangeppagari, M., Park, S.H., Kim, K.W., Kundapur, R.R. & Lee, S.J. 2018. In vivo toxicity evaluation of pristine graphene in developing zebrafish (Danio rerio) embryos. Environmental Science and Pollution Research 25: 12821-12829.

Chahardehi, A.M., Arsad, H. & Lim, V.H. 2020. Zebrafish as a successful animal model for screening toxicity of medicinal plants. Plants 9(10): 1345.

Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S. & Mozafari, M.R. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10: 57.

El Harbawy, M. 2014. Toxicity measurement of imidazolium ionic liquids using acute toxicity test. Procedia Chemistry 9: 40-52.

Fasil, D.M., Hamdi, H., Al-Barty, A., Zaid, A.A., Parashar, S.K.S. & Das, B. 2021. Selenium and zinc oxide multinutrient supplementation enhanced growth performance in zebra fish by modulating oxidative stress and growth-related gene expression. Frontiers in Bioengineering Biotechnology 9: 721717.

Gudkov, S.V., Burmistrov, D.E., Serov, D.A., Rebezov, M.B., Semenova, A.A. & Lisitsyn, A.B. 2021. A mini review of antibacterial properties of ZnO nanoparticles. Frontiers in Physics 9: 641481.

Hendrix, Y., Rauwel, E., Nagpal, K., Haddad, R., Estephan, E., Boissière, C. & Rauwel, P. 2023. Revealing the dependency of dye adsorption and photocatalytic activity of ZnO nanoparticles on their morphology and defect states. Nanomaterials (Basel) 13(13): 1998.

Ifijen, I.H., Maliki, M. & Anegbe, B. 2022. Synthesis, photocatalytic degradation and antibacterial properties of selenium or silver doped zinc oxide nanoparticles: A detailed review. Open Nano 8: 100082.

Kusiak-Nejman, E., Wojnarowicz, J., Morawski, A.W., Narkiewicz, U., Sobczak, K., Gierlotka, S. & Lojkowski, W. 2021. Size-dependent effects of ZnO nanoparticles on the photocatalytic degradation of phenol in a water solution. Applied Surface Science 541: 148416.

Lee, Y.L., Shih, Y.S., Chen, Z.Y., Cheng, F.Y., Lu, J.Y., Wu, Y.H. & Wang, Y.J. 2022. Toxic effects and mechanisms of silver and zinc oxide nanoparticles on zebrafish embryos in aquatic ecosystems. Nanomaterials 12(4): 717.

Mandzy, N., Grulke, E. & Druffel, T. 2015. Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technology 160: 121-126.

Mansoor, A., Khurshid, Z., Mansoor, E., Khan, M.T., Ratnayake, J. & Jamal, A. 2022. Effect of currently available nanoparticle synthesis routes on their biocompatibility with fibroblast cell lines. Molecules 27(20): 6972.

Matei, E., Șăulean, A.A., Râpă, M., Constandache, A., Predescu, A.M., Coman, G., Berbecaru, A.C. & Predescu, C. 2023. ZnO nanostructured matrix as nexus catalysts for the removal of emerging pollutants. Environmental Science and Pollution Research 30: 114779-114821.

Miliauskienė, J., Brazaitytė, A., Sutulienė, R., Urbutis, M. & Tučkutė, S. 2022. ZnO nanoparticle size-dependent effects on Swiss chard growth and nutritional quality. Agriculture 12: 1905.

Niroumand, U., Negar, F., Ghazal, G., Bahareh, H., Parisa, G. & Soliman, M.S. 2023. The effect of size, morphology and surface properties of mesoporous silica nanoparticles on pharmacokinetic aspects and potential toxicity concerns. Frontiers in Materials 10: 1189463.

Norazalina, S., Che Azurahanim, C.A., Nurul Athikah Adila, Z. & Emmellie, L.A. 2023. Characterization, antibacterial and toxicity evaluation of biosynthesized zinc oxide nanoparticles utilizing Eleuthrine bulbosa bulb extract. Sains Malaysiana 52(10): 2907-2918.

OECD. 2013. Test No. 236: Fish Embryo Acute Toxicity (FET) Test, OECD Guidelines for the Testing of Chemicals, Section 2. Paris: OECD Publishing.

Panda, P.K., Kumari, P., Patel, P., Samal, S.K., Mishra, S., Tambuwala, M.M., Dutt, A., Hilscherová, K., Mishra, Y.K., Varma, R.S., Suar, M., Ahuja, R. & Verma, S.K. 2022. Molecular nanoinformatics approach assessing the biocompatibility of biogenic silver nanoparticles with channelized intrinsic steatosis and apoptosis. Green Chemistry 24: 1190-1210.

Pal, S., Tak, Y.K. & Song, J.M. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology 73(6): 1712-1720.

Palos, C.M.M., Mariño-Gámez, A.E., Acosta-González, G.E., Hernández, M.B., García-Villarreal, S., Franco, L.F., García-Ortiz, L. & Aguilar-Martínez, J.A. 2023. Large-scale production of ZnO nanoparticles by high energy ball milling. Physica B: Condensed Matter. 656: 414776.

Pauzi, N., Zain, N.M. & Yusof, N.A.A. 2020. Gum arabic as natural stabilizing agent in green synthesis of ZnO nanofluids for antibacterial application. Journal of Environmental Chemical Engineering 8(3): 103331.

Raha, S. & Ahmaruzzaman, M. 2022. ZnO nanostructured materials and their potential applications: Progress, challenges and perspectives. Nanoscale Advances 4: 1868-1925.

Ramani, M., Ponnusamy, S., Muthamizhchelvan, C. & Marsili, E. 2014. Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity. Colloids and Surfaces B: Interfaces 117: 233-239.

Serrano, J., Romero, A.H., Manjón, F.J., Lauck, R., Cardona, M. & Rubio, A. 2004. Pressure dependence of the lattice dynamics of ZnO: An ab initio approach. Physical Review B 69(9): 094306.

Shekhawat, D., Vauth, M & Pezoldt, J. 2022. Size dependent properties of reactive materials. Inorganics 10(4): 56.

Singh, G., Ubhi, M.K., Jeet, K., Singla, C. & Kaur, M. 2023. A review on impacting parameters for photocatalytic degradation of organic effluents by ferrites and their nanocomposites. Processes 11: 1727.

Singh, J., Sharma, S., Soni, S., Sharma, S. & Ravi Chand Singh, R.C. 2019. Influence of different milling media on structural, morphological and optical properties of the ZnO nanoparticles synthesized by ball milling process. Materials Science in Semiconductor Processing 98: 29-38.

Subash, N.S.P., Noraziah, M.Z., Nurul Amira, A.R., Nur Faizah, A.B. & Wong, K.K. 2023. Antimicrobial property of photocatalytic nanoparticles-coated personal protective equipment (PPE) on bacteria and fungi. Sains Malaysiana 52(10): 2931-2942.

Verma, S.K., Panda, P.K., Jha, E., Suar, M. & Parashar, S.K.S. 2017. Altered physiochemical properties in industrially synthesized ZnO nanoparticles regulate oxidative stress; induce in vivo cytotoxicity in embryonic zebrafish by apoptosis. Scientific Reports 7: 13909.

Zhou, X.Q., Hayat, Z., Zhang, D.D., Li, M.Y., Hu, S., Wu, Q., Cao, Y.F. & Yuan, Y. 2023. Zinc oxide nanoparticles: Synthesis, characterization, modification and applications in food and agriculture. Processes 11(4): 1193.

 

*Corresponding author; email: arafidah@mardi.gov.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next